Total Synthesis of (−**)-Borrelidin**

Tohru Nagamitsu,† Daisuke Takano,† Takeo Fukuda,† Kazuhiko Otoguro,‡ Isao Kuwajima,§ Yoshihiro Harigaya,† and Satoshi Oh**mura*,‡,§**

*School of Pharmaceutical Science, Kitasato University, Kitasato Institute for Life Sciences, Kitasato Uni*V*ersity, and The Kitasato Institute, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan*

omura-s@kitasato.or.jp

Received April 8, 2004

ORGANIC LETTERS 2004

Vol. 6, No. 11 ¹⁸⁶⁵-**¹⁸⁶⁷**

ABSTRACT

The total synthesis of borrelidin has been achieved. The best feature of our synthetic route is SmI2-mediated intramolecular Reformatsky-type reaction for macrocyclization after esterification between two segments. The two key segments were synthesized through chelation-controlled carbotitanation, chelation-controlled hydrogenation, stereoselective Reformatsky reaction, and MgBr₂·Et₂O-mediated chelation-controlled allylation.

Borrelidin (**1**), a structurally unique 18-membered macrolide, was first isolated from *Streptomyces rochei* in 1949 by Berger et al. as an antibiotic possessing anti-*Borrelia* activity.1 Other useful biological activities of borrelidin such as its inhibitory activities against threonyl-tRNA synthetase² and cyclindependent kinase³ and its potent antiangiogenesis activity⁴ were reported later. The planar structure of borrelidin was elucidated by Keller-Schierlein in 1967 ,⁵ and the absolute configuration was determined by Anderson et al. through X-ray crystallography of a chiral solvate.⁶ Recently, we found that borrelidin also shows potent antimalarial activity against chloroquine-resistant strains, both in vitro and in vivo.7 This

(2) Paetz, W.; Nass, G. *Eur. J. Biochem.* **1973**, *35*, 331.

- (4) Wakabayashi, T.; Kageyama, R.; Naruse, N.; Tsukahara, N.; Funahashi, Y.; Kitoh, K.; Watanabe, Y. *J. Antibiot.* **1997**, *50*, 671.
-
- (5) Keller-Schierlein, W. *Hel*V*. Chim. Acta* **¹⁹⁶⁷**, *⁵⁰*, 75. (6) Anderson, B. F.; Herlt, A. J.; Rickards, R. W.; Robertson, G. B. *Aust. J. Chem.* **1989**, *42*, 717.

10.1021/ol049356w CCC: \$27.50 © 2004 American Chemical Society **Published on Web 05/08/2004**

biological profile, as well as its structural complexity, prompted substantial synthetic effort toward the total synthesis of $(-)$ -borrelidin. To date, two elegant total syntheses of borrelidin have been reported, by Morken et al.⁸ and Hanessian et al., 9 respectively, and two synthetic studies toward total synthesis have also been described.10 We report herein the stereocontrolled total synthesis of $(-)$ -borrelidin (**1**), by a convergent strategy that features SmI2-mediated intramolecular Reformatsky-type reaction of α -bromo- α , β : γ , δ -unsaturated nitrile 2 for macrocyclization at C11-12 after esterification between acid **10** and alcohol **15**, as shown in Figure 1.

We started from a known chiral alcohol **3** (97% ee), which was readily obtained from the *meso*-diol by enzymatic desymmetrization,¹¹ to lead to the $C1 - C11$ segment 10 (Scheme 1). The conversion of **3** to aldehyde **4**¹² was efficiently accomplished by a series of protections and deprotections followed by TPAP oxidation. 1,2-Addition of

(11) Fujita, K.; Mori, K. *Eur. J. Org. Chem*. **2001**, *66*, 493.

[†] School of Pharmaceutical Science, Kitasato University.

[‡] The Kitasato Institute.

[§] Kitasato Institute for Life Sciences, Kitasato University.

⁽¹⁾ Berger, J.; Jampolsky, L. M.; Goldberg, M. W. *Arch. Biochem.* **1949**, *22*, 476.

⁽³⁾ Tsuchiya, E.; Yukawa, M.; Miyakawa, T.; Kimura, K.; Takahashi, H. *J. Antibiot.* **2001**, *54*, 84.

⁽⁷⁾ Otoguro, K.; Ui, H.; Ishiyama, A.; Kobayashi, M.; Togashi, H.; Takahashi, Y.; Masuma, R.; Tanaka, H.; Tomoda, H.; Yamada, H.; Ohmura, S. *J. Antibiot.* **2003**, *56*, 727.

⁽⁸⁾ Duffey, M. O.; LeTiran, A.; Morken, J. P. *J. Am. Chem. Soc.* **2003**, *125*, 1458.

⁽⁹⁾ Hanessian, S.; Yang, Y.; Giroux, S.; Mascitti, V.; Ma, J.; Raeppel, F. *J. Am. Chem. Soc.* **2003**, *125*, 13784.

^{(10) (}a) Haddad, N.; Grishko, M.; Brik, A. *Tetrahedron Lett.* **1997**, *38*, 6075. (b) Vong, B. G.; Abraham, S.; Xiang, A. X.; Theodorakis, E. A. *Org. Lett.* **2003**, *4*, 1617.

Figure 1. Structure and retrosynthesis of borrelidin (**1**).

lithium acetylide (which was easily prepared from **5**13) to **4** was quenched with $MeO₂CCl$ to furnish the corresponding methyl carbonate, which was treated with $Pd(acac)₂/Bu₃P/$ HCO2NH4 ¹⁴ to give **6** after PMB deprotection. Subsequent

 a Conditions: (a) TBSCl, imidazole (98%). (b) K_2CO_3 , MeOH (98%). (c) TBDPSCl, imidazole. (d) PPTS (97%, two steps). (e) TPAP, NMO, 4 Å MS (88%). (f) (i) **5**, *n*-BuLi; (ii) **4**, then MeO₂CCl. (g) Pd(acac)₂, Bu₃P, HCO₂NH₄ (90%, two steps). (h) DDQ (97%). (i) Me₃Al, TiCl₄ (80%). (j) H₂ (1 MPa), Rh[(nbd)dppb] $BF₄$ (91%). (k) Dihydropyrane, PPTS (100%). (l) TBAF (96%). (m) TPAP, NMO, 4 Å MS (89%). (n) (*R*)-4-Benzyl-3 bromoacetyl-2-oxazolidinone, SmI2 (98%, 15:1). (o) TBSOTf, 2,6 lutidine. (p) LiOH, $H₂O₂$ (84%, two steps).

chelation-controlled carbotitanation of the homoallylic alcohol 6 under slightly modified Thompson's conditions¹⁵ produced the desired trisubstituted (*Z*)-olefin **7** as the sole product.¹⁶ Chelation-controlled hydrogenation¹⁷ of 7 using catalytic $Rh[(nbd)dpdb]BF_4$ under high pressure (1 MPa) gave rise to 8 with the desired C8 methyl stereocenter.¹⁸ THP ether formation, deprotection of the TBDPS ether, and TPAP oxidation efficiently produced aldehyde **9**. Stereoselective Reformatsky reaction of **9** with (*R*)-4-benzyl-3-bromoacetyl-2-oxazolidinone using $SmI₂$ under Fukuzawa's conditions¹⁹ afforded the corresponding adduct with the desired C3 stereochemistry $(15:1)$,²⁰ which was subjected to TBS protection followed by removal of the chiral auxiliary to give carboxylic acid **10**.

The C12-C23 segment **¹⁵** was prepared from the known chiral diol **11**, which was readily derived from succinic acid by Yamamoto asymmetric carbocyclization²¹ (Scheme 2).

^a Conditions: (a) PMBCl, NaH; (b) Dess-Martin periodinane (89%, two steps); (c) allyltrimethylsilane, $MgBr_2·Et_2O$ (95%, 20: 1); (d) TBSOTf, 2,6-lutidine (99%); (e) OsO4, NMO; (f) NaIO4 (100%, two steps); (g) Ph₃P=CHCHO (73%); (h) (EtO)₂P(O)CH-(Br)CN, DBU, LiCl (96%); (i) HF'pyridine (94%).

Monoselective PMB protection of diol **¹¹** followed by Dess-Martin oxidation gave aldehyde **12**. Reaction with allylmagnesium bromide or Brown's allylboration²² of 12 to produce **13** led to low stereoselectivity. Therefore, chelationcontrolled allylation of **12** with allyltrimethylsilane in the presence of Lewis acids was investigated. It was found that

⁽¹²⁾ For another synthetic route, see: (a) Smith, A. B., III; Condon, S. M.; McCauley, J. A.; Leazer, J. L., Jr.; Leahy, J. W.; Maleczka, R. E., Jr. *J. Am. Chem. Soc.* **1997**, *119*, 947. (b) Smith, A. B., III; Maleczka, R. E., Jr.; Leazer, J. L., Jr.; Leahy, J. W.; McCauley, J. A.; Condon, S. M. *Tetrahedron Lett.* **1994**, *35*, 4911. Also see: Roush, W. R.; Hoong, L. K.; Palmer, M. A. J.; Straub, J. A.; Palkowitz, A. D. *J. Org. Chem.* **1990**, *55*, 4117.

⁽¹³⁾ Paquette, L. A.; Guevel, R.; Sakamoto, S.; Kim, I. H.; Crawford, J. *J. Org. Chem*. **2003**, *68*, 6096.

⁽¹⁴⁾ Randinov, R.; Hutchings, S. D. *Tetrahedron Lett.* **1999**, *40*, 8955. (15) Schiavelli, M. D.; Plunkett, J. J.; Thompson, D. W. *J. Org. Chem*. **1981**, *46*, 807.

⁽¹⁶⁾ Stereochemistry was confirmed by NOE. Also see Supporting Information.

⁽¹⁷⁾ Evans, D. A.; Morrissey, M. M.; Dow, R. L. *Tetrahedron Lett*. **1985**, *26*, 6005.

⁽¹⁸⁾ Stereochemistries of C8 and C11 were confirmed by the achievement of the total synthesis of borrelidin (**1**).

⁽¹⁹⁾ Fukuzawa, S.; Matsuzawa, H.; Yoshimitsu, S. *J. Org. Chem*. **2000**, *65*, 1702.

⁽²⁰⁾ Stereochemistry was determined by the modified Mosher procedure; see: Ohtani, I.; Kusumi, J.; Kashman, Y.; Kakisawa, H. *J. Am. Chem. Soc.* **1991**, *113*, 4092. Also see Supporting Information.

^{(21) (}a) Misumi, A.; Iwanaga, K.; Furuta, K.; Yamamoto, H. *J. Am. Chem. Soc.* **1985**, *107*, 3343. (b) Fujimura, O.; de la Mata, F. J.; Grubbs, R. H. *Organometallics* **1996**, *15*, 1865.

⁽²²⁾ Brown, H. C.; Randad, R. S.; Bhat, K. S.; Zaidlewicz, M.; Racherla, U. S. *J. Am. Chem. Soc.* **1990**, *112*, 2389.

 a Conditions: (a) 10, 2,4,6-trichlorobenzoyl chloride, Et₃N then **15**, DMAP (97%); (b) PPTS (93%); (c) TPAP, NMO, 4 Å MS (79%); (d) SmI2, HMPA; (e) Dess-Martin periodinane; (f) NaBH4, $CeCl₃·7H₂O$; (71%, two steps, 12:1); (g) TBSOTf, 2,6-lutidine (75%) ; (h) DDQ (90%); (i) Dess-Martin periodinane; (j) NaClO₂, NaH₂PO₄ \cdot 2H₂O, 2-methyl-2-butene; (k) HF \cdot pyridine (85%, three steps).

 $MgBr₂·Et₂O$ gave the best result,^{23,24} affording 13 with high yield and stereoselectivity (20:1).²⁰ Dihydroxylation after TBS protection of **13** followed by treatment with NaIO4 afforded the corresponding aldehyde, which was subjected to a Wittig reaction with $Ph_3P=CHCHO$ to give (E) unsaturated aldehyde **¹⁴**. Subsequent Horner-Emmons olefination of 14 with $(EtO)_2P(O)CH(Br)CN^{25}$ using DBU and LiCl²⁶ furnished the corresponding (E) -vinyl bromide as a single isomer, which was exposed to HF'pyridine to form alcohol **15**.

Esterification between **10** and **15** was performed under Yamaguchi conditions²⁷ to give rise to the corresponding

ester, which was converted to the aldehyde, the key intermediate for the intramolecular Reformatsky-type reaction, by THP deprotection followed by TPAP oxidation. Next, we explored the SmI₂-mediated intramolecular Reformatsky-type reaction of 2. Treatment of 2 with SmI_2 at -78 °C gave no reaction, and a rise in the reaction temperature (to 0 °C) afforded a trace amount of cyclized compounds accompanied by decomposition. We next examined the effect of HMPA as an additive at -78 °C.²⁸ Consequently, treatment of 2 with a 3:2 ratio mixture of $SmI₂$ and $HMPA$ at -78 °C gave the best result, to produce cyclized products **¹⁸** and **¹⁹**16,18 with the desired *^Z* stereochemistry at C12- C13 in a 40% total yield, accompanied by the protonated uncyclized compound **16** (13%) and the cyclized compound **17** with the undesired *E* stereochemistry¹⁶ at C12-C13 (22%). Inversion of the hydroxyl group at C11, namely, conversion of epimer **¹⁸** into **¹⁹**, by Dess-Martin oxidation followed by Luche reduction proved to be quite effective (12:1). TBS protection of **19**, removal of the PMB ether, and a tandem oxidation approach provided the corresponding carboxylic acid, which was subjected to deprotection of the TBS ether with HF'pyridine, to give borrelidin (**1**). Synthetic borrelidin (**1**) was identical to an authentic sample in all respects ($[\alpha]_D$, mp, ¹H and ¹³C NMR, IR, FAB-MS).
In summary, we have achieved the total synthe

In summary, we have achieved the total synthesis of borrelidin (**1**). The best feature of our synthetic route is SmI2 mediated intramolecular Reformatsky-type reaction for macrocyclization after esterification between two segments, and this strategy differs significantly from those of the total syntheses reported previously. The other noteworthy features are as follows: chelation-controlled carbotitanation of a homoallylic alcohol to construct the trisubstituted (*Z*)-olefin **7**, MgBr₂ \cdot Et₂O-mediated stereoselective allylation of 12, and effective inversion of the hydroxyl group for the conversion of **18** to **19**. Improvement of the key intramolecular Reformatsky-type reaction and development of borrelidin analogues as antimalarial agents are currently in progress in our laboratory.

Acknowledgment. This work was supported in part by a Grant from the 21st Century COE Program, Ministry of Education, Culture, Sports, Science and Technology, Japan. T.N. acknowledges a Kitasato University research grant for young researchers.

Supporting Information Available: Characterization data and experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

OL049356W

⁽²³⁾ Use of other Lewis acids led to low stereoselectivity.

⁽²⁴⁾ For the effectiveness of MgBr2'Et2O in chelation-controlled allylation, see: Williams, D. R.; Klingler, F. D. *Tetrahedron Lett*. **1987**, *28*, 869.

⁽²⁵⁾ Iorga, B.; Ricard, L.; Savignac, P. *J. Chem. Soc., Perkin Trans. 1* **2000**, 3311.

⁽²⁶⁾ Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. *Tetrahedron Lett.* **1984**, *25*, 2183.

⁽²⁷⁾ Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamagauchi, M. *Bull. Chem. Soc. Jpn*. **1979**, *52*, 1989.

⁽²⁸⁾ Inanaga, J.; Ishikawa, M.; Yamaguchi, M. *Chem. Lett*. **1987**, 1485.